Hybrid Photo-induced Copolymerization of Ring-Strained and Vinyl Monomers Utilizing Metal-Free Ring-Opening Metathesis Polymerization Conditions

We introduce the hybrid copolymerization of two disparate monomer classes (vinyl monomers and ring-strained cyclic olefins) via living photopolymerization. The living character of the polymerization technique (metal-free photo-ROMP) is demonstrated by consecutive chain-extensions. Further, we propose a mechanism for the copolymerization and analyze the copolymer structure in detail by high-resolution mass spectrometry.

Integration of Metal-Free Ring-Opening Metathesis Polymerization and Organocatalyzed Ring-Opening Polymerization through a Bifunctional Initiator

We have investigated the use of metal-free ring-opening metathesis polymerization (MF-ROMP) in combination with organocatalyzed ring-opening polymerization (o-ROP) to produce diblock copolymers with highly disparate block compositions via exclusively metal-free methods. Use of a bifunctional initiator bearing a vinyl ether as organic initiator for MF-ROMP and an alcohol for initiation of o-ROP allowed for investigation of three synthetic approaches: 1) sequential polymerization with isolation of the intermediate macroinitiators, 2) simultaneous bidirectional polymerizations, and 3) “one-pot” sequential monomer addition. Macroinitiators formed by first conducting o-ROP were successfully used in subsequent MF-ROMP to prepare diblock copolymers. Simultaneous MF-ROMP and o-ROP was thwarted by incompatible cross-combinations of catalysts and monomers. Finally, a straightforward “one-pot” synthesis of block copolymers, using o-ROP followed by MF-ROMP, was realized by sequential addition of each monomer-catalyst combination.

Bidirectional Metal-Free ROMP from Difunctional Organic Initiators

Ditopic initiators were evaluated for bidirectional organocatalyzed ROMP. Incorporation of monomer was found to be successful for both inward and outward polymer growth, stemming from divinyl ethers with different relative orientation of alkoxy moieties. Macroinitiators were also used to prepare triblock and graft copolymers that were found to be easily cleaved with acid catalyst.

Investigation of Tacticity and Living Characteristics of Photoredox-Mediated Metal-Free Ring-Opening Metathesis Polymerization

We have investigated the microstructures of polymers produced via photoredox-mediated metal-free ring-opening metathesis polymerization (ROMP). Polynorbornene, poly(exo-dihydrodicyclopentadiene), and poly(endo-dicyclopentadiene) were found to have cis olefin contents of 23%, 24%, and 28%, respectively. Additionally, the cis/trans ratio remained consistent during the course of norbornene polymerization. Polymer tacticity was evaluated by quantitative 13C NMR spectroscopy, which revealed each polymer to be largely atactic. Specifically, the three polymers were estimated to be 33%, 58%, and 55% syndiotactic, respectively. In parallel, we also explored the ability to produce diblock copolymers from norbornene and exo-dihydrodicyclopentadiene. Successful diblock copolymerization was achieved using either monomer order. In each case, however, we observed results consistent with chain-chain coupling (increased molecular weight) and irreversible termination (dead chains observed during attempted chain extension) when reaction times were extended.

Expanded Functionality of Polymers Prepared Using Metal-Free Ring-Opening Metathesis Polymerization

Photoredox-mediated metal-free ring-opening metathesis polymerization (MF-ROMP) is an alternative to traditional metal-mediated ROMP that avoids the use of transition metal initiators while also enabling temporal control over the polymerization. Herein, we explore the effect of various additives on the success of the polymerization in order to optimize reaction protocols and identify new functionalized monomers that can be utilized in MF-ROMP. The use of protected alcohol monomers allows for homo- and copolymers to be prepared that contain functionality beyond simple alkyl groups. Several other functional groups are also tolerated to varying degrees and offer insight into future directions for expansion of monomer scope.

Comparison of Pyrylium and Thiopyryium Photo-oxidants in Metal-Free Ring-Opening Metathesis Polymerization

Systematically varied pyrylium and thiopyrylium photo-oxidants have been evaluated in the metal-free ring-opening-metathesis polymerization (MF-ROMP) of norbornene. Across the series, we observed higher conversion into polynorbornene from thiopyrylium species in comparison with pyrylium salts that were otherwise similarly functionalized. Additionally, more electron-rich photo-oxidants (i.e., weaker oxidants) correlated with higher conversions.

Developments in Externally Regulated Ring-Opening Metathesis Polymerization

This account details externally regulated ring-opening metathesis polymerization (ROMP) methods. Various external stimuli are discussed which collectively span chemical, thermal, photochemical, electrochemical, and mechanical modes of catalyst activation. Specific attention is also given to the recent development of a metal-free approach to ROMP that includes electro-organic and photoredox-mediated systems.

Metal-Free Preparation of Linear and Crosslinked Polydicyclopentadiene

Metal-free ring-opening metathesis polymerization (ROMP) utilizes organic photoredox mediators as alternatives to traditional metal-based ROMP initiators to allow the preparation of polymers without residual metal contamination. Herein we report studies exploring the use of endo-dicyclopentadiene (DCPD), a common ROMP monomer, to form linear polyDCPD and copolymers with norbornene. Subsequent cross-linking of the linear polyDCPD using thiol–ene chemistry allows for a completely metal-free preparation of cross-linked polyDCPD. Furthermore, the examination of a number of structurally related monomers offers insights into mechanistic details of this polymerization and demonstrates new monomers that can be utilized for metal-free ROMP.

Metal-Free Ring-Opening Metathesis Polymerization

We have developed a method to achieve ring-opening metathesis polymerization (ROMP) mediated by oxidation of organic initiators in the absence of any transition metals. Radical cations, generated via one-electron oxidation of vinyl ethers, were found to react with norbornene to give polymeric species with microstructures essentially identical to those traditionally obtained via metal-mediated ROMP. We found that vinyl ether oxidation could be accomplished under mild conditions using an organic photoredox mediator. This led to high yields of polymer and generally good correlation between Mn values and initial monomer to catalyst loadings. Moreover, temporal control over reinitiation of polymer growth was achieved during on/off cycles of light exposure. This method demonstrates the first metal-free method for controlled ROMP.