Creation of three-dimensional composite architectures via high-intensity focused ultrasound inside of foams

Free-form creation of 3-dimensional (3D) structures, such as in additive manufacturing (AM) and 3D printing (3DP), typically requires a direct line-of-sight or physical contact between an energy source and a build material. By stepping away from this equipment paradigm, we discovered a method to achieve 3D composites inside of opaque, open-cell foams that enables unprecedented access to bicontinuous, interlocked composite structures. We found that high-intensity focused ultrasound (HIFU) provided efficient, localized heating at a focal point that could be spatially controlled within a foam matrix. Foam specimens were infused with thermally curable acrylate resin formulations, which enabled free-form creation of 3D structures as the HIFU focal point was moved throughout the interior of the foam. The 3D structure was created entirely based upon the toolpath, without any build plate or inherently sequenced layer-by-layer processes. Since the foam and cured resin were mechanically interlocked in the process, HIFU curing achieves bicontinuous composites seemingly independent of surface compatibilities between the foam and resin. Starting with commercially available polyurethane foams, we investigated combinations with different resin systems to achieve a range of mechanical properties from the final composite structures. For example, using poly(ethylene glycol) diacrylate (PEGDA) resulted in stiff, hard composite domains within the foam, whereas resins comprising 2-hydroxyethyl acrylate (HEA) led to soft, elastomeric composite structures. Multimaterial composites were also achieved, simply by displacing uncured resin from the foam and exchanging it with a different resin formulation. Control over the shape and orientation of internal structural features within the foam scaffolds also enabled controllable anisotropic mechanical responses from the composites.

Design, testing, and application of an open-source powder material extrusion 3D printer

Additive Manufacturing, Volume 81, 5 February 2024, 104014

Powder material extrusion (PME) additive manufacturing (AM) is a convenient and practical method to study novel materials by circumventing the need for filamentation or compounding of materials. Avoiding additional processing steps can be an enabler for research with exploratory materials or those that otherwise display thermal instabilities. In this work, we present the design, development, and testing of an open-source PME printer. The open-source PME 3D printer achieves print quality on par with commercial material extrusion 3D printers in terms of dimensional accuracy, print quality, and mechanical performance. Additionally, we demonstrate this system to be versatile and robust through printing of recycled materials, polymer composites, polymer blends, and functional polymers with thermally sensitive moieties. The broad range of build materials illustrates the diverse capabilities accessible with this system, which enabled access to properties and functions such as phosphorescence, ferromagnetism, shape memory, and mechanochromism. By improving the accessibility of PME AM and demonstrating its versatility, we hope to enable others to explore novel material systems.

Block copolymer additives for toughening 3D printable epoxy resin

Giant, Volume 17, March 2024, 100204

We explore the potential for using a brush-coil triblock copolymer to enhance the mechanical properties of epoxy resin for 3D printing applications. Epoxy resins are widely used in structural material and adhesive and have great potential for 3D printing. However, the highly brittle nature of epoxy resins requires the use of large concentrations of toughening agents that pose significant challenges in meeting rheological requirements of 3D printing. We report a reactive brush-coil block copolymer with three distinct blocks that can phase separate and chemically crosslink with the base epoxy resin to form spherical aggregates. Detailed scanning electron microscopy imaging shows that these aggregates can arrest and deflect cracks during propagation and can synergistically strengthen (∼ 1.5×) and toughen (∼ 2×) the epoxy resin with even 1 wt% of the BCP additive to the base resin. Importantly, both the modulus and the glass transition temperatures are preserved. Direct ink writing (DIW) and digital light processing (DLP) 3D printing of the modified resins also shows the same strengthening and toughening effects seen in mold-cast samples, demonstrating its compatibility with 3D printing processes. These findings suggest that brush-coil triblock copolymers additives at very low concentrations can synergistically improve the mechanical properties of epoxy resin for 3D printed parts.

Dependence of the kinetic energy absorption capacity of bistable mechanical metamaterials on impactor mass and velocity

Using an alternative mechanism to dissipation or scattering, bistable structures and mechanical metamaterials have shown promise for mitigating the detrimental effects of impact by reversibly locking energy into strained material. Herein, we extend prior works on impact absorption via bistable metamaterials to computationally explore the dependence of kinetic energy transmission on the velocity and mass of the impactor, with strain rates exceeding 10 2 s−1. We observe a large dependence on both impactor parameters, ranging from significantly better to worse performance than a comparative linear material. We then correlate the variability in performance to solitary wave formation in the system and give analytical estimates of idealized energy absorption capacity under dynamic loading. In addition, we find a significant dependence on damping accompanied by a qualitative difference in solitary wave propagation within the system. The complex dynamics revealed in this study offer potential future guidance for the application of bistable metamaterials to applications including human and engineered system shock and impact protection devices.

Additive Manufacturing by Heating at a Patterned Photothermal Interface

Direct additive manufacturing (AM) of commercial silicones is an unmet need with high demand. We report a new technology, heating at a patterned photothermal interface (HAPPI), which achieves AM of commercial thermoset resins without any chemical modifications. HAPPI integrates desirable aspects of stereolithography with the thermally driven chemical modalities of commercial silicone formulations. In this way, HAPPI combines the geometric advantages of vat photopolymerization with the materials properties of, for example, injection molded silicones. We describe the realization of the new technology, HAPPI printing using a commercial Sylgard 184 polydimethylsiloxane resin, comparative analyses of material properties, and demonstration of HAPPI in targeted applications.

Vat 3D Printing of Bioderivable Photoresins – Toward Sustainable and Robust Thermoplastic Parts

Vat photopolymerization 3D printing (3DP) of thermoplastic materials is exceedingly difficult due to the typical reliance on cross-linking to form well-defined, solid objects on timescales relevant to 3DP. Additionally, photoresin build materials overwhelmingly rely upon nonrenewable feedstocks. To address these challenges, we report the vat 3DP of bioderivable photoresins that produced thermoplastic parts with highly tunable thermal and mechanical properties. The photoresins were formulated from two monomers that are easily obtainable from lignin deconstruction: 4-propylguaiacyl acrylate (4-pGA) and syringyl methacrylate (SMA). These bioderivable materials generated printed parts that ranged from soft elastomers to rigid plastics. For example, for 4-pGA-based materials, the breaking stresses varied from 0.20 to 20 MPa and breaking strains could be tuned from 4.7% up to 1700%, whereas 3D-printed SMA-based materials resulted in higher breaking stresses (∼30 MPa) and Tgs (∼132 °C). Notably, parts printed from these bioderivable formulations exhibited thermoplastic behavior and were largely soluble in common organic solvents─expanding the application and repurposing of the 3D-printed parts. We highlight this feature by reusing a 3DP part via solvent casting. Overall, the tunable properties and thermoplastic behavior of the lignin-derivable photoresins showcase renewable lignin resources as promising biofeedstocks for sustainable 3DP.

The role of polymer mechanochemistry in responsive materials and additive manufacturing.

The use of mechanical forces to chemically transform polymers dates back decades. In recent years, the use of mechanochemistry to direct constructive transformations in polymers has resulted in a range of engineered molecular responses that span optical, mechanical, electronic and thermal properties. The chemistry that has been developed is now well positioned for use in materials science, polymer physics, mechanics and additive manufacturing. Here, we review the historical backdrop of polymer mechanochemistry, give an overview of the existing toolbox of mechanophores and associated theoretical methods, and speculate as to emerging opportunities in materials science for which current capabilities are seemingly well suited. Non-linear mechanical responses and internal, amplifying stimulus–response feedback loops, including those enabled by, or coupled to, microstructured metamaterial architectures, are seen as particularly promising.

Mechanical characterization and constitutive modeling of visco-hyperelasticity of photocured polymers

In this work, we study the nonlinear behavior of soft photocured polymers typically used in 3D-printing. We perform experimental testing of 3D-printed samples cured at various controlled light intensities. The experimental data show the dependency of the material elasticity and rate-sensitivity on the curing light intensity. To elucidate these relations, we develop a physically-based visco-hyperelastic model in the continuum thermodynamics framework. In our model, the macroscopic viscoelastic behavior is bridged to the microscopic molecular chain scale. This approach allows us to express the material constants in terms of polymer chain physical parameters. We consider different physical mechanisms governing hyperelasticity and rate-dependent behaviors. The hyperelastic behavior is dictated by the crosslinked network; whereas, the viscous part originates in the free and dangling chains. Based on our experimental data, we illustrate the ability of the new constitutive model to accurately describe the influence of the light intensity on photocured polymer viscoelasticity.

Not all PLA filaments are created equal: an experimental investigation.

Additive manufacturing (AM) methods such as material extrusion (ME) are becoming widely used by engineers, designers and hobbyists alike for a wide variety of applications. Successfully manufacturing objects using ME three-dimensional printers can often require numerous iterations to attain predictable performance because the exact mechanical behavior of parts fabricated via additive processes are difficult to predict. One of that factors that contributes to this difficulty is the wide variety of ME feed stock materials currently available in the marketplace. These build materials are often sold based on their base polymer material such as acrylonitrile butadiene styrene or polylactic acid (PLA), but are produced by numerous different commercial suppliers in a wide variety of colors using typically undisclosed additive feed stocks and base polymer formulations. This paper aims to present the results from an experimental study concerned with quantifying how these sources of polymer variability can affect the mechanical behavior of three-dimensional printed objects. Specifically, the set of experiments conducted in this study focused on following: several different colors of PLA filament from a single commercial supplier to explore the effect of color additives and three filaments of the same color but produced by three different suppliers to account for potential variations in polymer formulation.

100th Anniversary of Macromolecular Science Viewpoint: Integrating Chemistry and Engineering to Enable Additive Manufacturing with High-Performance Polymers

Additive manufacturing (AM) with high-performance polymers (HPPs) represents simultaneously one of the most desirable and challenging feats in the AM arena. The very properties that make HPPs so attractive in a broad range of applications also make them nearly impossible to process using common AM equipment. Furthermore, when AM is achieved, it often brings the caveat of compromised mechanical properties of the final parts, in comparison with those made via injection molding. The demand to have advanced fabrication methods, rapid prototyping, and customization of parts while maintaining high performance in the finished products has inspired creative innovations that integrate chemical synthesis, materials science, mechanical engineering, and other fields into a multidisciplinary approach to advance AM with the seemingly “unprintable” HPPs. In this Viewpoint, we summarize several standout developments in the area and offer our perspective on future directions and challenges.