Using an alternative mechanism to dissipation or scattering, bistable structures and mechanical metamaterials have shown promise for mitigating the detrimental effects of impact by reversibly locking energy into strained material. Herein, we extend prior works on impact absorption via bistable metamaterials to computationally explore the dependence of kinetic energy transmission on the velocity and mass of the impactor, with strain rates exceeding 10 2 s−1. We observe a large dependence on both impactor parameters, ranging from significantly better to worse performance than a comparative linear material. We then correlate the variability in performance to solitary wave formation in the system and give analytical estimates of idealized energy absorption capacity under dynamic loading. In addition, we find a significant dependence on damping accompanied by a qualitative difference in solitary wave propagation within the system. The complex dynamics revealed in this study offer potential future guidance for the application of bistable metamaterials to applications including human and engineered system shock and impact protection devices.
Publications
C-H Functionalization and Allylic Amination for Post-Polymerization Modification of Polynorbornenes
Post-polymerization modification (PPM) via direct C-H functionalization is a powerful synthetic strategy to convert polymer feed-stocks into value-added products. We found that a metal-free, Se-catalyzed allylic C-H amination provided an efficient method for PPM of polynorbornenes (PNBs) produced via ring-opening metathesis polymerization. Inherent to the mechanism of the allylic amination, PPM on PNBs preserved the alkene functional groups along the polymer backbone, while also avoiding transposition of the double bonds. Amination using a series of aryl sulfonamides led to good control over the degree of functionalization, access to a range of functionalities, and tunable thermal properties from the resulting polymers.
Additive Manufacturing by Heating at a Patterned Photothermal Interface
Direct additive manufacturing (AM) of commercial silicones is an unmet need with high demand. We report a new technology, heating at a patterned photothermal interface (HAPPI), which achieves AM of commercial thermoset resins without any chemical modifications. HAPPI integrates desirable aspects of stereolithography with the thermally driven chemical modalities of commercial silicone formulations. In this way, HAPPI combines the geometric advantages of vat photopolymerization with the materials properties of, for example, injection molded silicones. We describe the realization of the new technology, HAPPI printing using a commercial Sylgard 184 polydimethylsiloxane resin, comparative analyses of material properties, and demonstration of HAPPI in targeted applications.
Vat 3D Printing of Bioderivable Photoresins – Toward Sustainable and Robust Thermoplastic Parts
Vat photopolymerization 3D printing (3DP) of thermoplastic materials is exceedingly difficult due to the typical reliance on cross-linking to form well-defined, solid objects on timescales relevant to 3DP. Additionally, photoresin build materials overwhelmingly rely upon nonrenewable feedstocks. To address these challenges, we report the vat 3DP of bioderivable photoresins that produced thermoplastic parts with highly tunable thermal and mechanical properties. The photoresins were formulated from two monomers that are easily obtainable from lignin deconstruction: 4-propylguaiacyl acrylate (4-pGA) and syringyl methacrylate (SMA). These bioderivable materials generated printed parts that ranged from soft elastomers to rigid plastics. For example, for 4-pGA-based materials, the breaking stresses varied from 0.20 to 20 MPa and breaking strains could be tuned from 4.7% up to 1700%, whereas 3D-printed SMA-based materials resulted in higher breaking stresses (∼30 MPa) and Tgs (∼132 °C). Notably, parts printed from these bioderivable formulations exhibited thermoplastic behavior and were largely soluble in common organic solvents─expanding the application and repurposing of the 3D-printed parts. We highlight this feature by reusing a 3DP part via solvent casting. Overall, the tunable properties and thermoplastic behavior of the lignin-derivable photoresins showcase renewable lignin resources as promising biofeedstocks for sustainable 3DP.
Mechanoactivation of Color and Autonomous Shape Change in 3D-Printed Ionic Polymer Networks
Stimuli-responsive materials can enhance the field of three-dimensional (3D) printing by generating objects that change shape in response to external cues. While temperature and pH are common inputs for initiating a response in a 3D-printed object, there are few examples of using a mechanical input to afford a response. Herein, we report a suite of mechanochromic ionic liquid gel inks that can be used to fabricate 3D-printed objects that use a single mechanoactivation event to elicit both a mechanochromic response and an autonomous shape change. Direct-ink write 3D printing was used to deposit ionic liquid gel inks to create multimaterial objects that underwent a predetermined mechanoactivated shape change (mechanomorphic) when the sample was pulled and then released. When spiropyran was incorporated into the inks, the onset of spiropyran isomerization into its purple merocyanine form occurred at strains dependent upon the particular ion gel ink formulation. We suggest that the color onset could be used as a simple indicator for when the strain required to achieve a predetermined change in shape has been reached, potentially serving as real-time visual cue for the user. Such morphing 3D-printed structures with integrated instructions have potential application to areas including stowable structures as well as multiresponsive autonomous components and sensors.
A highly efficient metal-free protocol for the synthesis of linear polydicyclopentadiene.
We have achieved breakthroughs for the efficient synthesis of linear polydicyclopentadiene (pDCPD) via photoredox mediated metal-free ring-opening metathesis polymerization (MF-ROMP). Molecular weight control from 1 to 16 kDa can be targeted in a straightforward manner. Assisted by this method, the Tg–Mn dependence of linear pDCPD is investigated and reported for the first time.
Mechanochemical Release of N‐heterocyclic Carbenes from Flex‐Activated Mechanophores.
We have discovered a new flex-activated mechanophore that releases an N-heterocyclic carbene (NHC) under mechanical load. The mechanophore design is based upon NHC-carbodiimide (NHC-CDI) adducts and demonstrates an important first step toward flex-activated designs capable of further downstream reactivities. Since the flex-activation is non-destructive to the main polymer chains, the material can be subjected to multiple compression cycles to achieve iterative increases in the activation percentage of mechanophores. Two different NHC structures were demonstrated, signifying the potential modularity of the mechanophore design.
An Ion‐Pairing Approach to Stereoselective Metal‐Free Ring‐Opening Metathesis Polymerization.
Stereochemistry can have profound impact on polymer and materials properties. Unfortunately, straightforward methods for realizing high levels of stereocontrolled polymerizations are often challenging to achieve. In a departure from traditional metal-mediated ring-opening metathesis polymerization (ROMP), we discovered a remarkably simple method for controlling alkene stereochemistry in photoredox mediated metal-free ROMP. Ion-pairing, initiator sterics, and solvation effects each had profound impact on the stereochemistry of polynorbornene (PNB). Simple modifications to the reaction conditions produced PNB with trans alkene content of 25 to >98%. High cis content was obtained from relatively larger counterions, toluene as solvent, low temperatures (-78 °C), and initiators with low Charton values. Conversely, smaller counterions, dichloromethane as solvent, and enol ethers with higher Charton values enabled production of PNB with high trans content. Data from a combined experimental and computational investigation are consistent with the stereocontrolling step of the radical cationic mechanism proceeding under thermodynamic control.
Advances in Polymerizations Modulated by External Stimuli
Synthetic polymer chemistry endeavors to imitate the spatial and temporal control exhibited within biological systems to obtain well-defined polymeric materials with unique structures, properties, and applications. This is often approached through the development of dynamic catalyst (or initiator) systems that use external stimuli to elicit discrete, site-specific transformations that impact the polymerization. Herein we highlight developments in polymerizations that are modulated by external stimuli, with particular focus on those systems that enable notable changes in kinetics, monomer selectivity, polymer architecture, or tacticity. Examples of external stimuli include chemical oxidants or reductants, light, applied voltage, and mechanical force.
The role of polymer mechanochemistry in responsive materials and additive manufacturing.
The use of mechanical forces to chemically transform polymers dates back decades. In recent years, the use of mechanochemistry to direct constructive transformations in polymers has resulted in a range of engineered molecular responses that span optical, mechanical, electronic and thermal properties. The chemistry that has been developed is now well positioned for use in materials science, polymer physics, mechanics and additive manufacturing. Here, we review the historical backdrop of polymer mechanochemistry, give an overview of the existing toolbox of mechanophores and associated theoretical methods, and speculate as to emerging opportunities in materials science for which current capabilities are seemingly well suited. Non-linear mechanical responses and internal, amplifying stimulus–response feedback loops, including those enabled by, or coupled to, microstructured metamaterial architectures, are seen as particularly promising.