The Intrinsic Mechanochemical Reactivity of Vinyl-Addition Polynorbornene

Herein we report the discovery of the intrinsic mechanochemical reactivity of vinyl-addition polynorbornene (VA-PNB), which has strained bicyclic ring repeat units along the polymer backbone. VA-PNBs with three different side chains were found to undergo ring-opening olefination upon sonication in dilute solutions. The sonicated polymers exhibited spectroscopic signatures consistent with conversion of the bicyclic norbornane repeat units to the ring-open isomer typical of polynorbornene made by ring-opening metathesis polymerization (ROMP-PNB). Thermal analysis and evaluation of chain scission kinetics suggest that sonication of VA-PNB results in chain segments containing a statistical mixture of vinyl-added and ROMP-type repeat units.

Additive Manufacturing with a Flex Activated Mechanophore for Nondestructive Assessment of Mechanochemical Reactivity in Complex Object Geometries

We used digital light processing additive manufacturing (DLP-AM) to produce mechanochemically responsive test specimens from custom photoresin formulations, wherein designer, flex activated mechanophores enable quantitative assessment of the total mechanophore activation in the specimen. The manufactured object geometries included an octet truss unit cell, a gyroid lattice, and an “8D cubic lattice”. The mechanophore activation in each test specimen was measured as a function of uniaxial compressive strain applied to the structure. Full shape recovery after compression was exhibited in all cases. These proof-of-concept results signify the potential to use flex activated mechanophore for nondestructive, quantitative volumetric assessment of mechanochemistry in test specimens with complex geometries. Additionally, the integration of DLP-AM with flex activated mechanophore build materials enabled the creation of customizable, three-dimensional mechanochemically responsive parts that exhibit small molecule release without undergoing irreversible deformation or fracture.

Investigations in Fundamental and Applied Polymer Mechanochemistry

The field of polymer mechanochemistry has experienced rapid growth over the past decade, propelled largely by the development of force-activated functional groups (mechanophores) and polymer structure-reactivity principles for mechanochemical transduction. In addition to fundamental guidelines for converting mechanical input into chemical output, there has also been increasing focus toward the application of polymer mechanochemistry for specific functions, materials, and devices. These endeavors are made possible by multidisciplinary approaches involving designer polymer synthesis, computational modeling and design, and different fields of engineering. Described herein are contributions from our group on the development of flex activated mechanophores for small molecule release and star polymer mechanochemistry, as well as collaborative efforts toward mechanochemically triggered depolymerizations and 3D printed mechanochromic materials.

Additive Manufacturing of Mechanochromic Polycaprolactone on Entry-Level Systems

This paper aims to explore and demonstrate the ability to integrate entry-level additive manufacturing (AM) techniques with responsive polymers capable of mechanical to chemical energy transduction. This integration signifies the merger of AM and smart materials.

Kinetic Analysis of Mechanochemical Chain Scission of Linear Poly(phthalaldehyde)

The kinetics of mechanochemical chain scission of poly(phthalaldehyde) (PPA) are investigated. Ultrasound-induced cavitation is capable of causing chain scission in the PPA backbone that ultimately leads to rapid depolymerization of each resulting polymer fragment when above the polymer’s ceiling temperature (Tc). An interesting feature of the mechanochemical breakdown of PPA is that “half-chain” daughter fragments are not observed, since the depolymerization is rapid following chain scission. These features facilitate the determination of rate constants of activation for multiple molecular weights from a single sonication experiment. Additionally, the degradation kinetics are modified with chain-end trapping agents through variation of the nature and amount of small molecule nucleophile or electrophile.

Modeling the Mechanochemical Degradation of Star Polymers

A model for predicting the molecular weight distributions of mechanochemically degraded star polymers has been developed. The model was shown to be in good agreement with experimental distributions and average total molecular weights obtained from ultrasonically degraded three-arm star poly(methyl acrylate)s. Generalization of the model to four- and n-arm star polymers was also achieved. The models are straightforward to use, and thus, all calculations were completed in Microsoft Excel.

Comparison of Mechanochemical Chain Scission Rates for Linear versus Three-Arm Star Polymers in Strong Acoustic Fields

The effect of star versus linear polymer architecture on the rates of mechanochemically induced bond scission has been explored. We determined rate constants for chain scission of parent linear and star polymers, from which daughter fragments were cleanly resolved. These studies confirm a mechanistic interpretation of star polymer chain scission that is governed by the spanning rather than total molecular weight. We further demonstrate the preserved rate of site-selective mechanophore activation across two different polymer structures. Specifically, we observed consistent activation rate constants from three-arm star and linear polymer analogues, despite the Mn of the star polymer being 1.5 times greater than that of the linear system.

Mechanically-Triggered Heterolytic Unzipping of a Low Ceiling Temperature Polymer

Biological systems rely on recyclable materials resources such as amino acids, carbohydrates and nucleic acids. When biomaterials are damaged as a result of aging or stress, tissues undergo repair by a depolymerization–repolymerization sequence of remodelling. Integration of this concept into synthetic materials systems may lead to devices with extended lifetimes. Here, we show that a metastable polymer, end-capped poly(o-phthalaldehyde), undergoes mechanically initiated depolymerization to revert the material to monomers. Trapping experiments and steered molecular dynamics simulations are consistent with a heterolytic scission mechanism. The obtained monomer was repolymerized by a chemical initiator, effectively completing a depolymerization–repolymerization cycle. By emulating remodelling of biomaterials, this model system suggests the possibility of smart materials where aging or mechanical damage triggers depolymerization, and orthogonal conditions regenerate the polymer when and where necessary.

Successive Mechanochemical Activation and Small Molecule Release in an Elastomeric Material

We have developed a mechanochemically responsive material capable of successively releasing small organic molecules from a cross-linked network upon repeated compressions. The use of a flex activated mechanophore that does not lead to main chain scission and an elastomeric polyurethane enabled consecutive compressions with incremental increases in the % mechanophore activation. Additionally, we examined the effect of multiple applications of compressive stress on both mechanophore activity and the mechanical behavior of the elastomeric matrix in which the mechanophore is embedded.

“Flex-Activated” Mechanophores: Using Polymer Mechanochemistry To Direct Bond Bending Activation

We describe studies in mechanochemical transduction that probe the activation of bonds orthogonal to an elongated polymer main chain. Compression of mechanophore-cross-linked materials resulted in the release of small molecules via cleavage of covalent bonds that were not integral components of the elongated polymer segments. The reactivity is proposed to arise from the distribution of force through the cross-linking units of the polymer network and subsequent bond bending motions that are consistent with the geometric changes in the overall reaction. This departure from contemporary polymer mechanochemistry, in which activation is achieved primarily by force-induced bond elongation, is a first step toward mechanophores capable of releasing side-chain functionalities without inherently compromising the overall macromolecular architecture.